Initial commit

Added base code, can run ELF files and simulate RV32I instructions
master
vhaudiquet 12 months ago
commit 981c35584c
  1. 55
      .clang-format
  2. 1
      .gitignore
  3. 27
      Makefile
  4. 10
      README.md
  5. 37
      src/bootloader/bootloader.c
  6. 8
      src/bootloader/bootloader.h
  7. 101
      src/bootloader/elf/elf.c
  8. 83
      src/bootloader/elf/elf.h
  9. 63
      src/cpu/instruction.h
  10. 452
      src/cpu/rv32cpu.c
  11. 194
      src/cpu/rv32cpu.h
  12. 27
      src/main.c
  13. 9
      src/memory/memory.c
  14. 10
      src/memory/memory.h
  15. 6
      src/memory/mmu/mmu.h
  16. 178
      src/option.c
  17. 19
      src/vriscv.h

@ -0,0 +1,55 @@
---
Language: Cpp
AllowShortFunctionsOnASingleLine: Empty
AllowShortIfStatementsOnASingleLine: AllIfsAndElse
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterReturnType: None
BreakBeforeBraces: Custom
BraceWrapping:
AfterCaseLabel: true
AfterControlStatement: Always
AfterEnum: true
AfterFunction: true
AfterStruct: true
AfterUnion: true
BeforeElse: true
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: false
# BreakBeforeBraces: Allman
BreakStringLiterals: false
ColumnLimit: 0
ContinuationIndentWidth: 2
IndentCaseBlocks: false
IndentCaseLabels: true
PointerAlignment: Left
# Indent
IndentWidth: 4
TabWidth: 4
UseTab: ForIndentation
# Spaces
SpaceAfterCStyleCast: true
SpaceAfterLogicalNot: false
SpaceAroundPointerQualifiers: Default
SpaceBeforeAssignmentOperators: true
SpaceBeforeCaseColon: false
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
AfterControlStatements: false
AfterFunctionDeclarationName: false
AfterFunctionDefinitionName: false
BeforeNonEmptyParentheses: false
SpaceBeforeRangeBasedForLoopColon: true
SpaceBeforeSquareBrackets: false
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesInCStyleCastParentheses: false
SpacesInConditionalStatement: false
SpacesInContainerLiterals: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
# Preprocessor
SortIncludes: Never

1
.gitignore vendored

@ -0,0 +1 @@
build/

@ -0,0 +1,27 @@
NAME=vriscv
CC=gcc
CFLAGS=-O3 -Wall -I src
LDFLAGS=
BUILD_DIR=build
C_FILES := $(shell find src/ -name '*.c')
all: $(BUILD_DIR)/$(NAME)
# Top-level targets
$(BUILD_DIR)/$(NAME): $(C_FILES) | $(BUILD_DIR)
$(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)
# Build directory
$(BUILD_DIR):
mkdir -p $(BUILD_DIR)
# Phony targets
.PHONY: clean
clean:
rm -rf $(BUILD_DIR)
.PHONY: run
.SILENT: run
run: all
./$(BUILD_DIR)/$(NAME)

@ -0,0 +1,10 @@
# vriscv - a risc-v simulator
## Resources used
Juraj's Blog, mostly:
- https://jborza.com/post/2021-04-04-riscv-supervisor-mode/
- https://jborza.com/emulation/2021/04/22/ecalls-and-syscalls.html
Buildroot fork for nommu linux:
- https://github.com/regymm/buildroot

@ -0,0 +1,37 @@
#include "bootloader.h"
#include "elf/elf.h"
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
uint32_t bootload(char* file_path)
{
// Open the file
FILE* f = fopen(file_path, "r");
if(!f)
{
fprintf(stderr, "Could not open file '%s': %s\n", file_path, strerror(errno));
exit(EXIT_FAILURE);
}
// Obtain file size
fseek(f, 0, SEEK_END);
size_t file_size = ftell(f);
fseek(f, 0, SEEK_SET);
// Load the file in memory
void* file = malloc(file_size);
if(fread(file, file_size, 1, f) != 1)
{
fprintf(stderr, "Could not read file '%s': %s\n", file_path, strerror(errno));
fclose(f);
exit(EXIT_FAILURE);
}
// Close the file
fclose(f);
// TODO: Check file type (for now we only bootload ELF)
return elf_32_load(file);
}

@ -0,0 +1,8 @@
#ifndef BOOTLOADER_H
#define BOOTLOADER_H
#include <stdint.h>
uint32_t bootload(char* file_path);
#endif

@ -0,0 +1,101 @@
#include "elf.h"
#include "memory/memory.h"
#include "vriscv.h"
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
uint32_t elf_32_load(void* file)
{
// Parse/verify the header
elf_header_32_t* header = file;
// Verify magic number
uint8_t* m = header->ELF;
if((m[0] != 0x7F) || (m[1] != 'E') || (m[2] != 'L') || (m[3] != 'F'))
{
fprintf(stderr, "Not a valid ELF file (wrong magic)\n");
exit(EXIT_FAILURE);
}
// Verify architecture
if(header->instruction_set != INSTRUCTION_SET_RISCV)
{
switch(header->instruction_set)
{
case INSTRUCTION_SET_X86:
fprintf(stderr, "Provided ELF file targets x86 ; perhaps you forgot to cross-compile ? Please provide a RISC-V ELF\n");
break;
case INSTRUCTION_SET_X86_64:
fprintf(stderr, "Provided ELF file targets x86_64; perhaps you forgot to cross-compile ? Please provide a RISC-V ELF\n");
break;
default:
fprintf(stderr, "Provided ELF file is for an unknown instruction set architecture (0x%x), please provide a RISC-V ELF\n", header->instruction_set);
break;
}
exit(EXIT_FAILURE);
}
// Verify bit count
if(header->bits != BITS_32)
{
switch(header->bits)
{
case BITS_64:
fprintf(stderr, "Provided ELF file targets RISC-V 64 bits ; please provide a 32-bits ELF\n");
break;
default:
fprintf(stderr, "Provided ELF file targets an unknown bit count (not 32 bits) ; please provide a 32-bits ELF\n");
break;
}
exit(EXIT_FAILURE);
}
// Verify endianness
if(header->endianness != ELF_LITTLE_ENDIAN)
{
fprintf(stderr, "Provided ELF file is encoded in big endian ; please provide a little endian ELF\n");
exit(EXIT_FAILURE);
}
// File should be correct ; now load it, using program header table
elf_program_header_32_t* program_header = (elf_program_header_32_t*) (((uint8_t*) file) + header->program_header_table_32);
size_t program_header_count = header->program_entry_amount;
for(size_t i = 0; i < program_header_count; i++)
{
elf_program_header_32_t current = program_header[i];
// Check segment type
if(current.segment_type != SEGMENT_TYPE_LOAD)
{
fprintf(stderr, "WARNING: Unknown segment type %u in ELF file ; skipping\n", current.segment_type);
continue;
}
// Check memory size
size_t memsz = current.segment_memory_size;
if(!memsz)
{
fprintf(stderr, "WARNING: LOAD segment with null size in ELF file ; skipping\n");
continue;
}
// Map the segment : first the part in the file, then the zeros
if(memory_size < (current.virtual_address + memsz))
{
fprintf(stderr, "FATAL: Not enough memory while loading ELF file\n");
exit(EXIT_FAILURE);
}
if(current.segment_file_size != 0)
{
memcpy(&memory[current.virtual_address], ((uint8_t*) file) + current.segment_offset, current.segment_file_size);
}
if(memsz > current.segment_file_size)
{
memset(&memory[current.virtual_address] + current.segment_file_size, 0, memsz - current.segment_file_size);
}
}
return header->entry_32;
}

@ -0,0 +1,83 @@
#ifndef ELF_H
#define ELF_H
/*
* ELF handling
* Valentin HAUDIQUET
* Sources are :
* - https://refspecs.linuxfoundation.org/elf/elf.pdf (ELF Reference)
* - https://wiki.osdev.org/ELF (OSDev)
*/
#include <stdint.h>
#include <stddef.h>
#include <string.h>
typedef struct ELF_HEADER_32
{
uint8_t ELF[4];
uint8_t bits; // 1 = 32bits, 2 = 64bits
uint8_t endianness; // 1 = little, 2 = big
uint8_t header_version;
uint8_t abi;
uint8_t padding0[8];
uint16_t exec_type; // 1 = relocatable, 2 = executable, 3 = shared, 4 = core
uint16_t instruction_set;
uint32_t elf_version;
uint32_t entry_32;
uint32_t program_header_table_32;
uint32_t section_table_32;
uint32_t flags;
uint16_t header_size;
uint16_t program_entry_size;
uint16_t program_entry_amount;
uint16_t section_entry_size;
uint16_t section_entry_amount;
uint16_t section_str_index; // Index of string table associated with section names
} __attribute__((packed)) elf_header_32_t;
#define ELF_LITTLE_ENDIAN 1
#define ELF_BIG_ENDIAN 2
#define BITS_32 1
#define BITS_64 2
#define INSTRUCTION_SET_X86 0x3
#define INSTRUCTION_SET_X86_64 0x3E
#define INSTRUCTION_SET_RISCV 0xF3
typedef struct ELF_SECTION_HEADER_32
{
uint16_t section_name;
uint16_t section_type;
uint16_t section_flags;
uint32_t section_addr_32;
uint32_t section_offset_32;
uint16_t section_size;
uint16_t section_link;
uint16_t section_info;
uint16_t section_addralign;
uint16_t section_entrysize;
} __attribute__((packed)) elf_section_header_32_t;
typedef struct ELF_PROGRAM_HEADER_32
{
uint32_t segment_type;
uint32_t segment_offset;
uint32_t virtual_address;
uint32_t undefined;
uint32_t segment_file_size;
uint32_t segment_memory_size;
uint32_t flags;
uint32_t align;
} __attribute__((packed)) elf_program_header_32_t;
#define SEGMENT_TYPE_NULL 0
#define SEGMENT_TYPE_LOAD 1
#define SEGMENT_TYPE_DYNAMIC 2
#define SEGMENT_TYPE_INTERP 3
#define SEGMENT_TYPE_NOTE 4
uint32_t elf_32_load(void* file);
#endif

@ -0,0 +1,63 @@
#ifndef INSTRUCTION_H
#define INSTRUCTION_H
/* RISC-V RV32 I Base Instruction Set */
#define OPCODE_LUI 0x37
#define OPCODE_AUIPC 0x17
#define OPCODE_JAL 0x6F
#define OPCODE_JALR 0x67
#define OPCODE_BRANCH 0x63
#define OPCODE_LOAD 0x3
#define OPCODE_STORE 0x23
#define OPCODE_ARITHLOG_IMM 0x13
#define OPCODE_ARITHLOG 0x33
#define OPCODE_NOP 0xF
#define OPCODE_SYSTEM 0x73
/* OPCODE_BRANCH sub functions (func3) */
#define FUNC3_BEQ 0x0
#define FUNC3_BNE 0x1
#define FUNC3_BLT 0x4
#define FUNC3_BGE 0x5
#define FUNC3_BLTU 0x6
#define FUNC3_BGEU 0x7
/* OPCODE_LOAD sub functions (func3) */
#define FUNC3_LB 0x0
#define FUNC3_LH 0x1
#define FUNC3_LW 0x2
#define FUNC3_LBU 0x4
#define FUNC3_LHU 0x5
/* OPCODE_STORE sub functions (func3) */
#define FUNC3_SB 0x0
#define FUNC3_SH 0x1
#define FUNC3_SW 0x2
/* OPCODE_ARITHLOG_IMM sub functions (func3 + func7) */
#define FUNC3_ADDI 0x0
#define FUNC3_SLTI 0x2
#define FUNC3_SLTIU 0x3
#define FUNC3_XORI 0x4
#define FUNC3_ORI 0x6
#define FUNC3_ANDI 0x7
#define FUNC3_SLLI 0x1
#define FUNC3_SRLI_SRAI 0x5
#define FUNC7_SRLI 0x0
#define FUNC7_SRAI 0x20
/* OPCODE_ARITHLOG sub functions (func3 + func7) */
#define FUNC3_ADD_SUB 0x0
#define FUNC7_ADD 0x0
#define FUNC7_SUB 0x20
#define FUNC3_SLL 0x1
#define FUNC3_SLT 0x2
#define FUNC3_SLTU 0x3
#define FUNC3_XOR 0x4
#define FUNC3_SRL_SRA 0x5
#define FUNC7_SRL 0x0
#define FUNC7_SRA 0x20
#define FUNC3_OR 0x7
#define FUNC3_AND 0x8
#endif

@ -0,0 +1,452 @@
#include "rv32cpu.h"
#include "instruction.h"
#include "memory/memory.h"
#include "memory/mmu/mmu.h"
#include "vriscv.h"
#include <stdlib.h>
#include <stdio.h>
rv32_cpu_t* cpu0;
typedef union RAW_INSTRUCTION
{
uint32_t data;
struct
{
uint8_t opcode : 7;
uint16_t rd : 5;
uint16_t func3 : 3;
uint16_t rs1 : 5;
uint16_t rs2 : 5;
uint16_t func7 : 7;
} __attribute__((packed));
} __attribute__((packed)) raw_instruction_t;
typedef struct INSTRUCTION
{
uint8_t opcode;
uint32_t immediate;
uint8_t func3;
uint8_t func7;
uint8_t rd;
uint8_t rs1;
uint8_t rs2;
} instruction_t;
void cpu_init()
{
cpu0 = malloc(sizeof(rv32_cpu_t));
cpu0->regs.zero = 0;
}
static void cpu_decode(raw_instruction_t raw_instruction, instruction_t* output)
{
output->opcode = raw_instruction.opcode;
output->immediate = 0;
output->func3 = raw_instruction.func3;
output->func7 = raw_instruction.func7;
output->rd = raw_instruction.rd;
output->rs1 = raw_instruction.rs1;
output->rs2 = raw_instruction.rs2;
// Decode immediate, and make sure opcode is correct
switch(raw_instruction.opcode)
{
// U-type instructions
case OPCODE_LUI:
case OPCODE_AUIPC:
output->immediate = raw_instruction.data & 0xFFFFF000;
break;
// J-type instructions
case OPCODE_JAL:
// Last bit (31) of data is immediate bit 20
output->immediate = (raw_instruction.data & 0x80000000) >> 11;
// Then following 10 bits (30-21) are immediate bits 10-1
output->immediate |= (raw_instruction.data & 0x7FE00000) >> 20;
// Following bit (20) is immediate bit 11
output->immediate |= (raw_instruction.data & 0x200000) >> 10;
// Last bits (19-12) are immediate bits 19-12
output->immediate |= (raw_instruction.data & 0xFF000);
break;
// I-type instructions
case OPCODE_JALR:
case OPCODE_LOAD:
case OPCODE_ARITHLOG_IMM:
case OPCODE_SYSTEM:
// Bits 31-20 are immediate bits 11-0
output->immediate = (raw_instruction.data & 0xFFF00000) >> 20;
break;
// B-type instructions
case OPCODE_BRANCH:
// Last bit (31) of data is immediate bit 12
output->immediate = (raw_instruction.data & 0x80000000) >> 19;
// Then following 6 bits (30-25) are immediate bits 10-5
output->immediate |= (raw_instruction.data & 0x7E000000) >> 20;
// On rd field, last 4 bits (4:1) are immediate bits 4:1
output->immediate |= (raw_instruction.rd & 0x1E);
// On rd field, first bit (0) is immediate bit 11
output->immediate |= (raw_instruction.rd & 0x01) << 11;
break;
// R-type instructions
case OPCODE_ARITHLOG:
break;
// S-type instructions
case OPCODE_STORE:
// Bits 31-25 (func7) are immediate bits 11:5
output->immediate = raw_instruction.func7 << 5;
// Bits of rd are immediate bits 4:0
output->immediate |= raw_instruction.rd;
break;
default:
fprintf(stderr, "Error: Unknown instruction opcode 0x%x, could not decode\n", raw_instruction.opcode);
exit(EXIT_FAILURE);
break;
}
}
static void cpu_execute(rv32_cpu_t* cpu, instruction_t* instruction)
{
switch(instruction->opcode)
{
case OPCODE_LUI:
{
// Load Upper Immediate (load immediate(31:12 bits) in rd)
if(instruction->rd)
cpu->regs.x[instruction->rd] = instruction->immediate;
break;
}
case OPCODE_AUIPC:
{
// Add Upper Immediate to PC
if(instruction->rd)
cpu->regs.x[instruction->rd] = instruction->immediate + cpu->pc;
break;
}
case OPCODE_JAL:
{
// Jump And Link
if(instruction->rd)
cpu->regs.x[instruction->rd] = cpu->pc + 4;
// Sign extend immediate from 21 bits to 32 bits
uint32_t immediate = (instruction->immediate & 0x1FFFFF) | (instruction->immediate & 0x100000 ? 0xFFE00000 : 0);
cpu->pc += immediate - 4;
break;
}
case OPCODE_JALR:
{
// Jump And Link Register
if(instruction->rd)
cpu->regs.x[instruction->rd] = cpu->pc + 4;
// Sign extend immediate from 12 bits to 32 bits
uint32_t immediate = (instruction->immediate & 0xFFF) | (instruction->immediate & 0x800 ? 0xFFFFF000 : 0);
cpu->pc = ((cpu->regs.x[instruction->rs1] + immediate) & 0xFFFFFFFE) - 4;
break;
}
case OPCODE_BRANCH:
{
// Branches ; to know which one, we must analyse func3
// Sign extend immediate from 13 bits to 32 bits
uint32_t immediate = (instruction->immediate & 0xFFF) | (instruction->immediate & 0x1000 ? 0xFFFFE000 : 0);
immediate -= 4;
switch(instruction->func3)
{
case FUNC3_BEQ:
// Branch EQual
if(cpu->regs.x[instruction->rs1] == cpu->regs.x[instruction->rs2])
cpu->pc = immediate;
break;
case FUNC3_BNE:
// Branch Not Equal
if(cpu->regs.x[instruction->rs1] != cpu->regs.x[instruction->rs2])
cpu->pc = immediate;
break;
case FUNC3_BLT:
// Branch Less Than
if(((int32_t) cpu->regs.x[instruction->rs1]) < ((int32_t) cpu->regs.x[instruction->rs2]))
cpu->pc = immediate;
break;
case FUNC3_BLTU:
// Branch Less Than Unsigned
if(cpu->regs.x[instruction->rs1] < cpu->regs.x[instruction->rs2])
cpu->pc = immediate;
break;
case FUNC3_BGE:
// Branch Greater Equal
if(((int32_t) cpu->regs.x[instruction->rs1]) >= ((int32_t) cpu->regs.x[instruction->rs2]))
cpu->pc = immediate;
break;
case FUNC3_BGEU:
// Branch Greater Equal Unsigned
if(cpu->regs.x[instruction->rs1] >= cpu->regs.x[instruction->rs2])
cpu->pc = immediate;
break;
default:
fprintf(stderr, "FATAL: Unknown func3 0x%x for branch instruction, could not execute\n", instruction->func3);
exit(EXIT_FAILURE);
break;
}
break;
}
case OPCODE_LOAD:
{
// Loads ; to know which one, we must analyse func3
// Sign extend immediate from 12 bits to 32 bits
uint32_t immediate = (instruction->immediate & 0xFFF) | (instruction->immediate & 0x800 ? 0xFFFFF000 : 0);
uint32_t address = cpu->regs.x[instruction->rs1] + immediate;
switch(instruction->func3)
{
case FUNC3_LB:
// Load Byte (8-bits)
cpu->regs.x[instruction->rd] = memory[mmu_translate(address)];
// Sign extend from 8 bits to 32 bits
cpu->regs.x[instruction->rd] |= (cpu->regs.x[instruction->rd] & 0x80 ? 0xFFFFFF00 : 0);
break;
case FUNC3_LH:
// Load Halfword (16-bits)
cpu->regs.x[instruction->rd] = *((uint16_t*) &memory[mmu_translate(address)]);
// Sign extend from 16 bits to 32 bits
cpu->regs.x[instruction->rd] |= (cpu->regs.x[instruction->rd] & 0x8000 ? 0xFFFF0000 : 0);
break;
case FUNC3_LW:
// Load Word (32-bits)
cpu->regs.x[instruction->rd] = *((uint32_t*) &memory[mmu_translate(address)]);
break;
case FUNC3_LBU:
// Load Byte Unsigned (8-bits)
cpu->regs.x[instruction->rd] = memory[mmu_translate(address)];
break;
case FUNC3_LHU:
// Load Halfword Unsigned (16-bits)
cpu->regs.x[instruction->rd] = *((uint16_t*) &memory[mmu_translate(address)]);
break;
default:
fprintf(stderr, "FATAL: Unknown func3 0x%x for load instruction, could not execute\n", instruction->func3);
exit(EXIT_FAILURE);
break;
}
break;
}
case OPCODE_STORE:
{
// Store ; to know which one, we must analyse func3
// Sign extend immediate from 12 bits to 32 bits
uint32_t immediate = (instruction->immediate & 0xFFF) | (instruction->immediate & 0x800 ? 0xFFFFF000 : 0);
uint32_t address = cpu->regs.x[instruction->rs1] + immediate;
switch(instruction->func3)
{
case FUNC3_SB:
// Store Byte (8-bits)
memory[mmu_translate(address)] = cpu->regs.x[instruction->rs2] & 0xFF;
break;
case FUNC3_SH:
// Store Halfword (16-bits)
*((uint16_t*) &memory[mmu_translate(address)]) = cpu->regs.x[instruction->rs2] & 0xFFFF;
break;
case FUNC3_SW:
// Store Word (32-bits)
*((uint32_t*) &memory[mmu_translate(address)]) = cpu->regs.x[instruction->rs2];
break;
default:
fprintf(stderr, "FATAL: Unknown func3 0x%x for store instruction, could not execute\n", instruction->func3);
exit(EXIT_FAILURE);
break;
}
break;
}
case OPCODE_ARITHLOG_IMM:
{
// Arithmetic and logic instructions on immediate values
// To find out which operation, we must analyse func3
// Sign extend immediate from 12 bits to 32 bits
uint32_t immediate = (instruction->immediate & 0xFFF) | (instruction->immediate & 0x800 ? 0xFFFFF000 : 0);
switch(instruction->func3)
{
case FUNC3_ADDI:
// ADD Immediate
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] + immediate;
break;
case FUNC3_SLTI:
// Set Less Than Immediate
if(((int32_t) cpu->regs.x[instruction->rs1]) < ((int32_t) immediate))
cpu->regs.x[instruction->rd] = 1;
else
cpu->regs.x[instruction->rd] = 0;
break;
case FUNC3_SLTIU:
// Set Less Than Immediate Unsigned
if(cpu->regs.x[instruction->rs1] < immediate)
cpu->regs.x[instruction->rd] = 1;
else
cpu->regs.x[instruction->rd] = 0;
break;
case FUNC3_XORI:
// XOR Immediate
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] ^ immediate;
break;
case FUNC3_ORI:
// OR Immediate
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] | immediate;
break;
case FUNC3_ANDI:
// AND Immediate
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] & immediate;
break;
case FUNC3_SLLI:
// Sign-extend immediate in rs2 from 5 bits to 32 bits
immediate = (cpu->regs.x[instruction->rs2] & 0x1F) | (cpu->regs.x[instruction->rs2] & 0x10 ? 0xFFFFFFE0 : 0);
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] << immediate;
break;
case FUNC3_SRLI_SRAI:
// Sign-extend immediate in rs2 from 5 bits to 32 bits
immediate = (cpu->regs.x[instruction->rs2] & 0x1F) | (cpu->regs.x[instruction->rs2] & 0x10 ? 0xFFFFFFE0 : 0);
// Analyse func7 to know which is it
switch(instruction->func7)
{
case FUNC7_SRLI:
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] >> immediate;
break;
case FUNC7_SRAI:
// Arithmetic slide
uint32_t sign_bit = cpu->regs.x[instruction->rs1] & 0x80000000;
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] >> immediate;
if(sign_bit)
cpu->regs.x[instruction->rd] |= ~(0xFFFFFFFF >> immediate);
break;
default:
fprintf(stderr, "FATAL: Unknown func7 0x%x for arithlog immediate SRLI/SRAI instruction, could not execute\n", instruction->func7);
exit(EXIT_FAILURE);
break;
}
break;
default:
fprintf(stderr, "FATAL: Unknown func3 0x%x for arithlog immediate instruction, could not execute\n", instruction->func3);
exit(EXIT_FAILURE);
break;
}
break;
}
case OPCODE_ARITHLOG:
{
// Arithmetic and logic instructions
// To find out which operation, we must analyse func3 and func7
switch(instruction->func3)
{
case FUNC3_ADD_SUB:
switch(instruction->func7)
{
case FUNC7_ADD:
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] + cpu->regs.x[instruction->rs2];
break;
case FUNC7_SUB:
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] - cpu->regs.x[instruction->rs2];
break;
default:
fprintf(stderr, "FATAL: Unknown func7 0x%x for arithlog ADD/SUB instruction, could not execute\n", instruction->func7);
exit(EXIT_FAILURE);
break;
}
break;
case FUNC3_SLL:
// Slide Left Logical
uint32_t sll_value = cpu->regs.x[instruction->rs2] & 0x1F;
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] << sll_value;
break;
case FUNC3_SLT:
// Set Less Than
if(((int32_t) cpu->regs.x[instruction->rs1]) < ((int32_t) cpu->regs.x[instruction->rs2]))
cpu->regs.x[instruction->rd] = 1;
else
cpu->regs.x[instruction->rd] = 0;
break;
case FUNC3_SLTIU:
// Set Less Than Unsigned
if(cpu->regs.x[instruction->rs1] < cpu->regs.x[instruction->rs2])
cpu->regs.x[instruction->rd] = 1;
else
cpu->regs.x[instruction->rd] = 0;
break;
case FUNC3_XOR:
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] ^ cpu->regs.x[instruction->rs2];
break;
case FUNC3_OR:
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] | cpu->regs.x[instruction->rs2];
break;
case FUNC3_AND:
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] & cpu->regs.x[instruction->rs2];
break;
case FUNC3_SRL_SRA:
switch(instruction->func7)
{
case FUNC7_SRL:
// Slide Right Logical
uint32_t srl_value = cpu->regs.x[instruction->rs2] & 0x1F;
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] >> srl_value;
break;
case FUNC7_SRA:
// Slide Right Arithmetical
uint32_t sra_value = cpu->regs.x[instruction->rs2] & 0x1F;
uint32_t sign_bit = cpu->regs.x[instruction->rs1] & 0x80000000;
cpu->regs.x[instruction->rd] = cpu->regs.x[instruction->rs1] >> sra_value;
if(sign_bit)
cpu->regs.x[instruction->rd] |= ~(0xFFFFFFFF >> sra_value);
break;
default:
fprintf(stderr, "FATAL: Unknown func7 0x%x for arithlog SRL/SRA instruction, could not execute\n", instruction->func7);
exit(EXIT_FAILURE);
break;
}
break;
default:
fprintf(stderr, "FATAL: Unknown func3 0x%x for arithlog instruction, could not execute\n", instruction->func3);
exit(EXIT_FAILURE);
break;
}
break;
}
case OPCODE_NOP:
{
// TODO : Implement PAUSE, FENCE, FENCE.TSO
break;
}
case OPCODE_SYSTEM:
{
// TODO : Implement ECALL, EBREAK
break;
}
default:
fprintf(stderr, "FATAL: Unknown instruction opcode 0x%x while executing; how could this decode ?\n", instruction->opcode);
exit(EXIT_FAILURE);
break;
}
}
void cpu_loop(rv32_cpu_t* cpu)
{
while(1)
{
// Fetch
raw_instruction_t raw_instruction;
if(cpu->pc > memory_size - 4)
{
fprintf(stderr, "Error: instruction fetch: pc is out of addressable memory\n");
exit(EXIT_FAILURE);
}
raw_instruction.data = *((uint32_t*) (&memory[cpu->pc]));
// Decode
instruction_t instruction;
cpu_decode(raw_instruction, &instruction);
// Execute
cpu_execute(cpu, &instruction);
cpu->pc += 4;
}
}

@ -0,0 +1,194 @@
#ifndef RV32CPU_H
#define RV32CPU_H
#include <stdint.h>
/*
* This is a structure encoding for the registers of
* the rv32 cpu.
* It allows access of register x0 using :
* structname.x0, structname.zero, structname.x[0]
* This way, access can be really flexible
*/
typedef struct RV32_CPU_REGS
{
union
{
struct
{
union
{
uint32_t x0;
uint32_t zero;
};
union
{
uint32_t x1;
uint32_t ra;
};
union
{
uint32_t x2;
uint32_t sp;
};
union
{
uint32_t x3;
uint32_t gp;
};
union
{
uint32_t x4;
uint32_t tp;
};
union
{
uint32_t x5;
uint32_t t0;
};
union
{
uint32_t x6;
uint32_t t1;
};
union
{
uint32_t x7;
uint32_t t2;
};
union
{
uint32_t x8;
uint32_t s0;
};
union
{
uint32_t x9;
uint32_t s1;
};
union
{
uint32_t x10;
uint32_t a0;
};
union
{
uint32_t x11;
uint32_t a1;
};
union
{
uint32_t x12;
uint32_t a2;
};
union
{
uint32_t x13;
uint32_t a3;
};
union
{
uint32_t x14;
uint32_t a4;
};
union
{
uint32_t x15;
uint32_t a5;
};
union
{
uint32_t x16;
uint32_t a6;
};
union
{
uint32_t x17;
uint32_t a7;
};
union
{
uint32_t x18;
uint32_t s2;
};
union
{
uint32_t x19;
uint32_t s3;
};
union
{
uint32_t x20;
uint32_t s4;
};
union
{
uint32_t x21;
uint32_t s5;
};
union
{
uint32_t x22;
uint32_t s6;
};
union
{
uint32_t x23;
uint32_t s7;
};
union
{
uint32_t x24;
uint32_t s8;
};
union
{
uint32_t x25;
uint32_t s9;
};
union
{
uint32_t x26;
uint32_t s10;
};
union
{
uint32_t x27;
uint32_t s11;
};
union
{
uint32_t x28;
uint32_t t3;
};
union
{
uint32_t x29;
uint32_t t4;
};
union
{
uint32_t x30;
uint32_t t5;
};
union
{
uint32_t x31;
uint32_t t6;
};
};
uint32_t x[32];
};
} rv32_cpu_regs_t;
typedef struct RV32_CPU
{
rv32_cpu_regs_t regs;
uint32_t pc;
} rv32_cpu_t;
extern rv32_cpu_t* cpu0;
void cpu_init();
void cpu_loop(rv32_cpu_t* cpu);
#endif

@ -0,0 +1,27 @@
#include "vriscv.h"
#include "memory/memory.h"
#include "bootloader/bootloader.h"
#include "cpu/rv32cpu.h"
char* CURRENT_NAME;
int main(int argc, char** argv)
{
CURRENT_NAME = argc ? argv[0] : NAME;
parse_options(argc, argv);
// Initialize the memory
mem_init();
// Bootload the file passed as argument
uint32_t entry_point = bootload(file_path);
// Initialize the CPU
cpu_init();
cpu0->pc = entry_point;
// CPU simulation
cpu_loop(cpu0);
return 0;
}

@ -0,0 +1,9 @@
#include "memory.h"
#include "vriscv.h"
uint8_t* memory;
void mem_init()
{
memory = malloc(memory_size);
}

@ -0,0 +1,10 @@
#ifndef MEMORY_H
#define MEMORY_H
#include <stdint.h>
extern uint8_t* memory;
void mem_init();
#endif

@ -0,0 +1,6 @@
#ifndef MMU_H
#define MMU_H
#define mmu_translate(vaddr) (vaddr)
#endif

@ -0,0 +1,178 @@
/*
* Command-line option parsing
*/
#include "vriscv.h"
#define OPTION_SEPARATOR "-"
uint64_t memory_size = 512 * 1024 * 1024;
char* file_path;
static void print_usage();
static void print_help();
static void print_version();
static int parse_long_option(char* str, char* argq);
void parse_options(int argc, char** argv)
{
for(int i = 1; i < argc; i++)
{
// Start option parsing for argument 'i'
if(argv[i][0] != *OPTION_SEPARATOR) continue;
// Check for long options
if(argv[i][1] == *OPTION_SEPARATOR)
{
i += parse_long_option(argv[i] + 2, argv[i + 1]);
continue;
}
// Parse short options
int k = 1;
while(argv[i][k])
{
switch(argv[i][k])
{
case 'h':
case '?':
{
print_help();
exit(0);
}
case 'v':
{
print_version();
exit(0);
}
case 'm':
{
// First try to convert next chars into int (ex. -m512)
char* end;
memory_size = strtol(&argv[i][k + 1], &end, 10);
if(*end != '\0' || end == &argv[i][k + 1])
{
if(argv[i][k + 1])
{
fprintf(stderr, "Error: Option -m needs an argument, but you used -m in a group of options without an integer next to it\n");
exit(EXIT_FAILURE);
}
// Try to parse next arg as integer
if(argc <= i + 1)
{
fprintf(stderr, "Error: Option " OPTION_SEPARATOR "m needs an argument\n");
exit(EXIT_FAILURE);
}
memory_size = strtol(argv[i + 1], &end, 10);
if(*end != '\0')
{
fprintf(stderr, "Error: Invalid argument '%s' for option " OPTION_SEPARATOR "m\n", argv[i + 1]);
exit(EXIT_FAILURE);
}
else
{
i++;
k = strlen(argv[i]) - 1;
}
}
else k += (end - &argv[i][k + 1]);
if(memory_size <= 0)
{
fprintf(stderr, "Error: Memory size needs to be > 0\n");
exit(EXIT_FAILURE);
}
if(memory_size > 4096)
{
fprintf(stderr, "Error: Cannot address more than 4 GiB of memory on 32-bits !\n");
exit(EXIT_FAILURE);
}
memory_size *= 1024 * 1024;
break;
}
default:
{
fprintf(stderr, "Error: Unknown short option -%c\n", argv[i][k]);
exit(EXIT_FAILURE);
}
}
k++;
}
}
if(argc <= 1)
{
print_usage();
exit(EXIT_FAILURE);
}
else file_path = argv[argc - 1];
}
static int parse_long_option(char* str, char* argq)
{
if(strcmp(str, "help") == 0)
{
print_help();
exit(0);
}
else if(strcmp(str, "version") == 0)
{
print_version();
exit(0);
}
else if(strcmp(str, "memory") == 0)
{
if(argq == NULL)
{
fprintf(stderr, "Error: No argument given for option " OPTION_SEPARATOR "-memory\n");
exit(EXIT_FAILURE);
}
// Convert argument to integer
char* end;
memory_size = strtol(argq, &end, 10);
if(*end != '\0')
{
fprintf(stderr, "Error: Invalid argument '%s' for option " OPTION_SEPARATOR "-memory\n", argq);
exit(EXIT_FAILURE);
}
if(memory_size > 4096)
{
fprintf(stderr, "Error: Cannot address more than 4 GiB of memory on 32-bits !\n");
exit(EXIT_FAILURE);
}
memory_size *= 1024 * 1024;
return 1;
}
else
{
fprintf(stderr, "Error: Unknown long option " OPTION_SEPARATOR OPTION_SEPARATOR "%s\n", str);
exit(EXIT_FAILURE);
}
}
static void print_usage()
{
printf("Usage: %s [options] <elf-file>\n", CURRENT_NAME);
}
static void print_help()
{
print_usage();
printf("Options:\n");
printf(" " OPTION_SEPARATOR "h, " OPTION_SEPARATOR "?, --help\t\tPrint this help message\n");
printf(" " OPTION_SEPARATOR "v, --version\t\t\tPrint version information\n");
printf(" " OPTION_SEPARATOR "m, --memory\t\t\tSet the simulated memory size, in MiB\n");
}
static void print_version()
{
printf("%s (%s) version %s\n", CURRENT_NAME, NAME, VERSION);
}

@ -0,0 +1,19 @@
#ifndef VRISCV_H
#define VRISCV_H
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#define NAME "vriscv"
#define VERSION "0.1"
extern char* CURRENT_NAME;
/* Program options */
extern size_t memory_size;
extern char* file_path;
void parse_options(int argc, char** argv);
#endif
Loading…
Cancel
Save