Compare commits

..

4 Commits

  1. 25
      src/cpu/exception.c
  2. 19
      src/cpu/exception.h
  3. 7
      src/cpu/rv32cpu.c
  4. 2
      src/cpu/rv32cpu.h
  5. 11
      src/devices/sbi/sbi.c
  6. 11
      src/devices/sbi/sbi.h
  7. 13
      src/memory/memory.c
  8. 114
      src/memory/mmu.c
  9. 9
      src/memory/mmu.h

@ -0,0 +1,25 @@
#include "exception.h"
#include <stdio.h>
void exception_trigger(rv32_cpu_t* cpu, uint32_t scause)
{
// An exception can only be triggered by the CPU itself,
// so we know we already own the mutex
// We are in the CPU thread itself, but we need
// the return of this function to be the beginning of
// the cpu loop
// To achieve that, we can just call cpu_loop (noreturn)
// at the end of this function
// Save execution context, so that 'mret/sret/..' can restore it
// TODO
// Set PC to STVEC, and set SCAUSE
// TODO: If PC cannot be mmu_resolved, throw a 'double fault' ?
cpu->pc = cpu->csr[CSR_STVEC];
cpu->csr[CSR_SCAUSE] = scause;
pthread_mutex_unlock(&cpu0_mutex);
cpu_loop(cpu);
}

@ -0,0 +1,19 @@
#ifndef EXCEPTION_H
#define EXCEPTION_H
#include "rv32cpu.h"
void exception_trigger(rv32_cpu_t* cpu, uint32_t scause);
#define SCAUSE_INSTRUCTION_MISSALIGNED 0x0
#define SCAUSE_INSTRUCTION_ACCESS_FAULT 0x1
#define SCAUSE_ILLEGAL_INSTRUCTION 0x2
#define SCAUSE_BREAKPOINT 0x3
#define SCAUSE_LOAD_ACCESS_FAULT 0x5
#define SCAUSE_AMO_ADDRESS_MISALIGNED 0x6
#define SCAUSE_ENVIRONMENT_CALL 0x8
#define SCAUSE_INSTRUCTION_PAGE_FAULT 0xC
#define SCAUSE_LOAD_PAGE_FAULT 0xD
#define SCAUSE_STORE_AMO_PAGE_FAULT 0xF
#endif

@ -501,7 +501,6 @@ static void cpu_execute(rv32_cpu_t* cpu, instruction_t* instruction)
case OPCODE_NOP:
{
// TODO : Implement PAUSE, FENCE, FENCE.TSO
fprintf(stderr, "Warning: Unsupported NOP instruction\n");
break;
}
case OPCODE_SYSTEM:
@ -532,7 +531,7 @@ static void cpu_execute(rv32_cpu_t* cpu, instruction_t* instruction)
switch(instruction->func7)
{
case FUNC7_SFENCEVMA:
fprintf(stderr, "SFENCE.VMA: Guest kernel must think we have an MMU. We have none.\n");
// TODO : Check if we really need to do something on SFENCE.VMA ?
break;
case FUNC7_WFI:
fprintf(stderr, "WFI: Guest kernel must think we have interrupts. We have none. Halting simulation.\n");
@ -602,14 +601,12 @@ static void cpu_execute(rv32_cpu_t* cpu, instruction_t* instruction)
// Load-Reserved Word
cpu->regs.x[instruction->rd] = mem_read32(address);
// TODO register reservation set that subsumes the bytes in word
fprintf(stderr, "LR.W\n");
break;
case FUNC75_SCW:
// Store-Conditional Word
// TODO succeed only if the reservation is still valid and the reservation set contains the bytes written
mem_write32(address, cpu->regs.x[instruction->rs2]);
cpu->regs.x[instruction->rd] = 0; // TODO write 1 in rd on failure
fprintf(stderr, "SC.W\n");
break;
case FUNC75_AMOSWAPW:
// Atomic Memory Operation SWAP Word
@ -681,7 +678,7 @@ static void cpu_execute(rv32_cpu_t* cpu, instruction_t* instruction)
}
}
void cpu_loop(rv32_cpu_t* cpu)
__attribute__((noreturn)) void cpu_loop(rv32_cpu_t* cpu)
{
while(1)
{

@ -201,6 +201,6 @@ typedef struct RV32_CPU
extern rv32_cpu_t* cpu0;
extern pthread_mutex_t cpu0_mutex;
void cpu_init();
void cpu_loop(rv32_cpu_t* cpu);
__attribute__((noreturn)) void cpu_loop(rv32_cpu_t* cpu);
#endif

@ -10,6 +10,11 @@ void sbi_call(rv32_cpu_t* cpu, uint32_t extension_id, uint32_t func_id)
{
switch(func_id)
{
case SBI_FUNCTION_GET_SPEC_VERSION:
// Format: [31(reserved,0) 7 bits(major) 24 bits(minor)]
// Version 2.0
cpu->regs.a0 = 0x2000000;
break;
case SBI_FUNCTION_GET_MVENDOR_ID:
cpu->regs.a0 = 0;
break;
@ -25,6 +30,12 @@ void sbi_call(rv32_cpu_t* cpu, uint32_t extension_id, uint32_t func_id)
}
break;
}
case SBI_EXTENSION_SET_TIMER:
{
// TODO : Correctly implement that
cpu->regs.a0 = 0;
break;
}
case SBI_EXTENSION_LEGACY_CONSOLE_PUTCHAR:
{
printf("%c", cpu->regs.a0);

@ -3,6 +3,17 @@
#include "cpu/rv32cpu.h"
/* SBI Base extension */
#define SBI_EXTENSION_BASE 0x10
#define SBI_FUNCTION_GET_SPEC_VERSION 0x0
#define SBI_FUNCTION_GET_IMPL_ID 0x1
#define SBI_FUNCTION_GET_IMPL_VERSION 0x2
#define SBI_FUNCTION_PROBE_EXTENSION 0x3
#define SBI_FUNCTION_GET_MVENDOR_ID 0x4
#define SBI_FUNCTION_GET_MARCH_ID 0x5
#define SBI_FUNCTION_GET_MIMPL_ID 0x6
#define SBI_EXTENSION_SET_TIMER 0x0
#define SBI_EXTENSION_LEGACY_CONSOLE_PUTCHAR 0x1
#define SBI_EXTENSION_LEGACY_SHUTDOWN 0x8

@ -1,5 +1,6 @@
#include "memory.h"
#include "vriscv.h"
#include "mmu.h"
uint8_t* memory;
pthread_mutex_t memory_mutex;
@ -39,6 +40,8 @@ void mem_register_mmio(uint32_t address, uint32_t reg_size, uint32_t reg_count,
void mem_write8(uint32_t address, uint8_t value)
{
address = mmu_resolve(cpu0, address);
// Look wether we are on an MMIO region
struct MMIO_ENTRY* io = mmio;
while(io)
@ -68,6 +71,8 @@ void mem_write8(uint32_t address, uint8_t value)
void mem_write16(uint32_t address, uint16_t value)
{
address = mmu_resolve(cpu0, address);
// Look wether we are on an MMIO region
struct MMIO_ENTRY* io = mmio;
while(io)
@ -97,6 +102,8 @@ void mem_write16(uint32_t address, uint16_t value)
void mem_write32(uint32_t address, uint32_t value)
{
address = mmu_resolve(cpu0, address);
// Look wether we are on an MMIO region
struct MMIO_ENTRY* io = mmio;
while(io)
@ -126,6 +133,8 @@ void mem_write32(uint32_t address, uint32_t value)
uint8_t mem_read8(uint32_t address)
{
address = mmu_resolve(cpu0, address);
// Look wether we are on an MMIO region
struct MMIO_ENTRY* io = mmio;
while(io)
@ -155,6 +164,8 @@ uint8_t mem_read8(uint32_t address)
uint16_t mem_read16(uint32_t address)
{
address = mmu_resolve(cpu0, address);
// Look wether we are on an MMIO region
struct MMIO_ENTRY* io = mmio;
while(io)
@ -184,6 +195,8 @@ uint16_t mem_read16(uint32_t address)
uint32_t mem_read32(uint32_t address)
{
address = mmu_resolve(cpu0, address);
// Look wether we are on an MMIO region
struct MMIO_ENTRY* io = mmio;
while(io)

@ -0,0 +1,114 @@
#include "mmu.h"
#include "cpu/exception.h"
#include <stdio.h>
#include <stdlib.h>
extern uint8_t* memory;
// Memory Managment Unit implementation
// We only support Sv32
#define PAGE_SIZE (4 * 1024) // 4KiB, 2^12B
#define LEVELS 2
#define PTE_SIZE 4 // sizeof(uint32_t)
// SATP CSR Register: [MODE(1bit) ASID(9bits) PPN(22bits)]
#define SATP_MODE (1 << 31)
#define SATP_MODE_BARE (0)
#define SATP_MODE_SV32 (1 << 31)
#define SATP_ASID (0x1FF << 22)
#define SATP_PPN (0x3FFFFF)
// Page Table entry: [PPN[1](12bits) PPN[0](10bits) RSW(2bits) D A G U X W R V]
#define PTE_PPN_1(pte) ((pte & 0xFFF00000) >> 20)
#define PTE_PPN_0(pte) ((pte & 0x000FFC00) >> 10)
#define PTE_PPN(pte) ((pte & 0xFFFFFC00) >> 10)
#define PTE_RSW (0b11 << 8)
#define PTE_D (1 << 7)
#define PTE_A (1 << 6)
#define PTE_G (1 << 5)
#define PTE_U (1 << 4)
#define PTE_X (1 << 3)
#define PTE_W (1 << 2)
#define PTE_R (1 << 1)
#define PTE_V (1 << 0)
// Physical address: 34 bits [PPN[1](12bits, ) PPN[0](10bits) Offset(12bits)]
// We only use 32-bits addresses, so the top 2 are always 0
#define PADDR_PAGE_OFFSET (0x00000FFF)
// Virtual address: [VPN[1](10bits) VPN[0](10bits) Offset(12bits)]
#define VADDR_VPN_1 (0xFFC00000)
#define VADDR_VPN_0 (0x003FF000)
#define VADDR_PAGE_OFFSET (0x00000FFF)
uint32_t mmu_resolve(rv32_cpu_t* cpu, uint32_t vaddr)
{
// TODO: Make sure we are in S-mode or U-mode
// Check if MODE field is 'bare', meaning no mmu
if((cpu->csr[CSR_SATP] & SATP_MODE) == SATP_MODE_BARE)
return vaddr;
// fprintf(stderr, "MMU enabled on (virtual) address 0x%x resolution\n", vaddr);
uint32_t page_table = (cpu->csr[CSR_SATP] & SATP_PPN) * PAGE_SIZE;
// Resolve first-level page table entry
uint32_t vpn_1 = (vaddr & VADDR_VPN_1) >> 22;
uint32_t pte_address = page_table + vpn_1 * PTE_SIZE;
uint32_t pte = *((uint32_t*) (&memory[pte_address]));
if(!(pte & PTE_V))
{
// Invalid PTE
// TODO : Add a MEMORY_ACCESS_TYPE
exception_trigger(cpu, SCAUSE_INSTRUCTION_PAGE_FAULT);
}
if((pte & PTE_R) || (pte & PTE_W) || (pte & PTE_X))
{
// Leaf PTE, we are ready to resolve the mapping
// This is a 4 MiB megapage
// Physical Address: [PPN[1] = pte.PPN[1], PPN[0] = vaddr.VPN[0], offset]
uint32_t paddr = 0;
paddr |= (PTE_PPN_1(pte) << 22);
paddr |= (vaddr & VADDR_VPN_0);
paddr |= vaddr & VADDR_PAGE_OFFSET;
return paddr;
}
// PTE is a pointer to next level of page table
page_table = PTE_PPN(pte) * PAGE_SIZE;
// Resolve second-level page table entry
uint32_t vpn_0 = (vaddr & VADDR_VPN_0) >> 12;
pte_address = page_table + vpn_0 * PTE_SIZE;
pte = *((uint32_t*) (&memory[pte_address]));
if(!(pte & PTE_V))
{
// Invalid PTE
exception_trigger(cpu, SCAUSE_INSTRUCTION_PAGE_FAULT);
}
// This must be a leaf PTE, as Sv32 only supports 2-level mappings
// This is a 4 KiB page
if(!((pte & PTE_R) || (pte & PTE_W) || (pte & PTE_X)))
{
fprintf(stderr, "Error: Pointer second-level Page Table Entry 0x%x at 0x%x while resolving virtual address 0x%x\n", pte, pte_address, vaddr);
exit(EXIT_FAILURE);
}
// Physical Address: [PPN[1] = pte.PPN[1], PPN[0] = pte.PPN[0], offset]
uint32_t paddr = 0;
paddr |= (PTE_PPN_1(pte) << 22);
paddr |= (PTE_PPN_0(pte) << 12);
paddr |= vaddr & VADDR_PAGE_OFFSET;
return paddr;
}

@ -0,0 +1,9 @@
#ifndef MMU_H
#define MMU_H
#include <stdint.h>
#include "cpu/rv32cpu.h"
uint32_t mmu_resolve(rv32_cpu_t* cpu, uint32_t vaddr);
#endif
Loading…
Cancel
Save